[image: image1.emf]

Programming a Computer Game – Asteroid Storm

Difficulty, Achievement and Bumping into Things
Objectives
· To understand that computer games have an end goal, interim achievements and obstacles the player must overcome.

· To understand and use the concept of collision detection.

· To understand the use of different levels in a game.

· Learn an industry lesson – the challenge in a game should NOT come from difficulties playing it.

Preparation

Download and install the partially-complete AsteroidStorm publication from:
http://www.digitalworkshop.com/resources/teaching/files/asteroidStorm_IMP.zip
Print the worksheet if your students are likely to need step-by-step instructions.

Print the Homework sheet or arrange to present/email it for students to use as reference.

Teacher’s Introduction

This lesson uses the partially-complete game Asteroid Storm to introduce the concept of challenge and achievement in computer game design. It also teaches the programming concept of “collision detection” and the importance of an appropriate user control system.

The controls in this game are the number pad keys for up, down, left and right. Alternatively the rocket sprite can simply be dragged around the screen by clicking and dragging with the left mouse button but this may be kept to be revealed later - see the important note about usability below.

Note that some of the text uses unusual fonts and so has been converted to vector graphics to preserve the appearance. It is therefore not editable.

If the Level Complete frame gets in the way of selecting asteroids remind students that they can be selected in the organiser panel too or right-click on the message frame and select View—Conceal in Editor to temporarily hide it while editing.

Lesson Structure
1: Introductory Discussion
Invite ideas as to what makes someone want to play a computer game. Look out for “challenge” and “achievement” and “excitement”.

Computer games have a goal to work towards and the way to make the user feel they have achieved something is to put some kind of difficulty in the way.
This lesson will look at how we can achieve this even in a really simple computer game.

In the Asteroid Storm game the achievement is simple – guide your spacecraft to the golden planet. And the obstacles are obvious – the asteroids. So when the rocket hits an asteroid it crashes.
So we need to program our game to recognise when the rocket hits an asteroid. This uses a fundamental feature of many games called “collision detection”. In other words we detect when the rocket collides with an asteroid.
2: Activity1 - Collision Detection
Students should now use the Collision Enter Trigger to look for a collision between the rocket and all the asteroids. The trigger should then send the player to the Game Over page.

Think about which object should be programmed to check for the collision (Optional hint – the rocket must avoid any asteroid but all the asteroids must look out for the rocket.)

A step-by-step worksheet for Opus Pro is provided for those not yet familiar with the program.
Check to ensure all students are applying the trigger to the rocket and NOT it’s constituent polygons.

Also watch for students applying the collision enter trigger to the asteroids – the efficient way is to apply it to the rocket and this is a one-to-many interaction rather than a many to one.

High ability students can be encouraged to look out for the bug and the less efficient way of doing this (see below) and/or to consider what happens when the rocket reaches the planet.

3: Interim guidance
We could have put collision detection on all the asteroids – but obviously this would have taken more work – putting it on the rocket means only programming one check.

Bug
Did anyone notice the bug? Demonstrate how the collision detection sometimes happens when the objects are near each other but not quite touching. This is because the program can’t see what the object looks like it only knows there’s a box moving round the screen with something it.
To fix the “bug” go to the General Properties for the rocket and for the asteroids and select the Ignore Transparent Area option and for both the rocket and the asteroids. (Note you can apply a single change like this to multiple objects at the same time by selecting them all and then opening the Properties dialog. Be careful not to change the position or size because all objects will then take that size or position.)
4: Continuation Activity
Now invite students to use the techniques they just learnt to program the game to recognise when the goal has been achieved. This will involve setting a collision enter trigger when the rocket hits the planet which then shows the Level Complete Message (with the Continue button) page.

5: Discuss Possible Improvements
Invite comments on what’s wrong with the game. Look out for “too easy” or “boring”. Because the achievement doesn’t feel very great because it’s not much of a challenge.
So how could this be more difficult?

· More asteroids – a more complex maze. Or add other objects such as other spacecraft or space debris etc.
· Animate the obstacles to increase the challenge and therefore make the achievement greater.

· Put a time limit in using the Countdown component from the components gallery in Opus Pro.
What is the feature of many computer games where difficulty increases in stages? Answer - levels.

Games use different levels to get players used to the way the game plays but mostly to give a continuing sense of achievement at reaching more and more difficult goals.

6: Activity2 - More Levels
Invite students to create an additional level by duplicating the level one page and then animating the asteroids.
The animation need only be done simply. Select each asteroid and apply the On Show trigger and then add the Animation action and choose the Bounce Around Page/frame to bounce them around the page.

[image: image2.png]
Using the random option will set objects in different directions to make it interesting.
Remind students that the action can be cut and pasted onto each asteroid to save time.

Note the use of the speed option for the animation can influence the difficulty (and even render it unplayable).

Also note that the Continue button on the Level Complete message frame will need to be reprogrammed to move to the next level.

Higher ability students can be encouraged to create a series of levels with additional asteroids and faster animation or trying different animation speeds for individual asteroids. They can also be challenged to put the Level Complete message as a frame on each level page instead of as a separate page so that the Level Complete page can become a game complete page.
Important Note on Usability – once the asteroids are animated the use of the keyboard as control mechanism makes the game almost impossible – it simply isn’t responsive enough.
This should be pointed out and it should be pointed out that when part of the difficulty of a game comes from the control mechanism this feels wrong and users are put off. If a game feels like it is being made difficult to play because of factors beyond the player’s control then it will be frustrating not challenging. There are many examples of major games releases where the usability stopped the game from being successful.

In this case a secondary control option has been programmed in allowing the rocket to be dragged through the mouse – simply press and hold down the left mouse button and drag the rocket towards the planet.

7: Plenary

We’ve looked at how games create a sense of achievement by having goals and having obstacles which the player must overcome to reach that goal.
Where obstacles are literally objects on the screen to be avoided we have learnt that games often use collision detection to check whether a player has hit any of those obstacles.

We have also learnt that games have a series of goals with increasingly difficult obstacles so that the player’s sense of achievement continues as they move through the game.

Importantly we have learnt that the challenge in a game should NOT come from poor user controls or other factors outside the player’s control.

How might we extend this game even further.

Add treasure to be collected - an additional interim achievement

Add scoring – adds another aspect to the achievement – complete the task but with a better score.

Add additional lives – improves usability and allows more difficulty to be added without the game becoming frustrating as it is too difficult and forces player to go over the same ground too often.

Homework

What other parts of a game need collision detection? It’s not always obvious - if I tell you it is sometimes called “hit testing”?
Identify the goals, achievements, challenges and obstacles in three different games – look for games where the obstacles are not obvious. – caring for a pet games, quiz games etc. A homework sheet is provided but you may prefer to simply get them to note down the headings rather than print the sheet.
Resources & Materials
This lesson plan is designed for use with Opus Pro but can be adapted for use with other products. The constituent resources are available (see below) for you to develop your own version but the specifics in this lesson plan will need to be adapted accordingly.

The partially-complete project file for use with Opus Pro is available at:
http://www.digitalworkshop.com/resources/teaching/files/asteroidStorm_IMP.zip
or via TES teacher resources or Guardian Teacher resources – search for Asteroid Storm.

The constituent resources for you to build your own project in another program are available from:

http://www.digitalworkshop.com/resources/teaching/files/asteroidStorm_res.zip
Additional Projects
Check
http://www.digitalworkshop.com/info/solutions/sol_ed_programming.shtml
for further Computer Science project resources and lesson plans
or

http://www.digitalworkshop.com/resources/res_education.shtml
for all aspects of the curriculum.
Note – the above links include underscore characters not spaces

3

